Classification Reports
 MTE User Manual
 3.21
 June 2009

© MetroCount ${ }^{\text {® }}$

Weekly Vehicle Counts

Continuous

The Weekly Vehicle Counts report lists traffic volumes by hour in a weekly format, with one week per page. Each row represents a single hour time step, and the columns represent days of the week, with the actual dates shown.

	Mon 16 Jul	Tue 17 Jul	Wed 18 Jul	Thu 19 Jul	Fri 20 Jul	$21 \frac{\text { Sat }}{\mathrm{Jul}}$	$22 \frac{\mathrm{Sun}}{\mathrm{Jul}}$	Average $1-5$	$1-7$
Howr								1	
0000-0100	172	141	193	226	218	413	522	190.0	269.3
0100-0200	106	89	114	130	113	252	282	110.4	155.1
0200-0300	80	73	81	91	119	177	216	88.8	119.6
0300-0400	125	121	126	130	139	148	190	128.2	139.9
0400-0500	318	351	310	333	264	215	178	315.2	281.3
0500-0600	728	705	700	696	632	396	276	692.2	590.4
0600-0700	1562	1491	1486	1519	1483	574	345	\| 1508.2	1208.6
0700-0800	1915 <	$1963<$	1981 <	$1863<$	1836	785	591	\| 1911.6<	1562.0
0800-0900	1877	1827	1841	1762	$1844<$	1039	851	\| 1830.2	$1577.3<$
0900-1000	1483	1554	1549	1583	1578	1152	911	\| 1549.4	1401.4
1000-1100	1461	1467	1478	1505	1521	1289	1099	\| 1486.4	1402.9
1100-1200	1560	1579	1622	1532	1602	1466 <	1287 <	1579.0	1521.1
1200-1300	1555	1611	1568	1571	1641	1362	1369<	1589.2	1525.3
1300-1400	1518	1599	1530	1593	1563	1350	1280	\| 1560.6	1490.4
1400-1500	1601	1614	1581	1625	1657	1343	1288	\| 1615.6	1529.9
1500-1600	1761	1888	1843	1773	1658	1286	1281	I 1784.6	1641.4
1600-1700	1955	2052<	2008 <	1923 <	1999	1252	1256	\| 1987.4	1777.9
1700-1800	1989 <	2044	1999	1912	2001 $<$	1422 $<$	1273	\| 1989.0<	$1805.7<$
1800-1900	1316	1426	1515	1473	1552	1198	924	\| 1456.4	1343.4
1900-2000	840	926	1049	910	1063	1014	735	957.6	933.9
2000-2100	716	798	847	815	814	1036	660	798.0	812.3
2100-2200	711	773	920	851	806	1099	613	812.2	824.7
2200-2300	515	656	703	654	762	794	519	658.0	657.6
2300-2400	281	359	401	366	611	677	303	403.6	428.3
Totals								1	
								,	
0700-1900	19991	20624	20515	20115	20452	14944	13410	120339.4	18578.7
0600-2200	23820	24612	24817	24210	24618	18667	15763	124415.4	22358.1
0600-0000	24616	25627	25921	25230	25991	20138	16585	125477.0	23444.0
0000-0000	26145	27107	27445	26836	27476	21739	18249	127001.8	24999.6
								,	
AM Peak	0700	0700	0700	0700	0800	1100	1100	1	
	1915	1963	1981	1863	1844	1466	1287	1	
								,	
PM Peak	1700	1600	1600	1600	1700	1700	1200	1	
	1989	2052	2008	1923	2001	1422	1369	1	

Five-day and seven-day averages are provided on the right side of the report. The five-day average is the average vehicle flow across week-days. The seven-day average is the average vehicle flow across the entire week. Note that weekends are underlined.

12 hour ($0700-1900$), 16 hour ($0600-2200$), 18 hour ($0600-0000$) and 24 hour ($0000-0000$) totals are included at the bottom of the Weekly Vehicle Counts report. Also included are the AM and PM peak hours for each day, and their respective hourly totals. Note that the AM and PM peaks are also indicated in the hourly totals by a bold typeface and a < character.
An asterisk * in the report matrix represents an hour where data is not available for the entire hour, or has been excluded in the report Profile. Note that this is different to a zero vehicle count for an hourly period, which will be correctly displayed with a 0 .
The Weekly Vehicle Counts report does not include totals where there is missing data for any period covered by that total. This prevents results from being displayed that are misleading due to missing
data. If totals for partial days of data are required, consider using another report, such as the Vehicle Counts report.

All averages in the Weekly Vehicle Counts report are correctly calculated when there is missing data. For example, a five-day average where two of the days contain no data (asterisks) will be correctly averaged over the three days of actual data.

Note also that the five-day and seven-day averages next to the totals at the bottom of the report are calculated from the all available data. This may not be the average of the daily totals if partial days are included.

Time Filtering

The default behaviour of the Weekly Vehicle Counts report is to align to the first weekday. For a dataset that starts mid-week, a single week of data will span two pages.
To align the report to the start of the dataset, select the Align reports to start of time range option in the report's Profile. To restrict the report to a single week, consider using the First seven aligned days Auto-Wrap option.

A Weekly Vehicle Report, aligned to the first day (weekends underlined)

Virtual Week

The Virtual Week version of the Weekly Vehicle Counts report merges multiple weeks of data into a single, averaged week.
Each hourly total in this report is the sum of the same hour from each week, divided by the number of weeks that data is available for that period. As this report is a mathematical representation of average vehicle flow, totals are displayed as floating point numbers.

The layout of the Virtual Week version is identical to the continuous Weekly Vehicle Counts report, with the exception that dates are not included at the top of each day column.

Vehicle Counts

Continuous

The Vehicle Counts report is based on a 24-hour format. Each day of data is represented by 24 hourly totals, with a user defined hourly breakdown, called time drops. For example, a time drop of 15 minutes will produce an additional four totals below the hourly totals, for each 15 minute period.
Time drops that do not contain complete data are represented by a hyphen (-). These include time drops excluded by the time filter, and partial drops where the dataset starts or ends mid-drop. Hourly totals will not be displayed if there are any missing drops.

Each day in the report includes a day heading, with the date and the total vehicles in the report Profile for that day. Days containing complete data also include a day summary, with the AM and PM peak hours to the resolution of the time drop, and the total vehicles in that hour.

The AM and PM Peak Hour Factor is a measure of flow variation within the peak hour. It is calculated as the total of the peak hour, divided by the peak bin total multiplied by the drops per hour. Therefore, if the peak hour total is spread equally across the time drops for that hour, the Peak Hour Factor will be equal to 1 . The Peak Hour Factor normally ranges between 0.7 and 1.0.

The last column on a Vehicle Counts report is simply the first column from the next day. This is for highlighting a peak hour that spans across a day boundary. Note that these figures are not included in the daily total.

The Vehicle Counts report has a number of formatting options, including the size of the time drops. These are accessed via Properties in the report's right-click menu.

* Monday, 16 July 2007 - Total=26145, 5 minute drops

Vehicle Counts report, with format options

Option	Description
Time drops	Specifies the interval for each time drop.
Include peak line	Includes the day summary row with AM and PM peaks. This line will not appear if a day does not contain complete data.
Show peak hour in	Drop totals that are part of the AM and PM peak hours will be displayed in

Option	Description
colour	red. Note that the peak hour is calculated to the resolution of the time drop,
and may span two columns.	

The Virtual Day version of the Vehicle Counts report merges multiple days of data into a single, averaged day.

Each drop total in this report is the sum of the same time drop from each day, divided by the number of days that data is available for that period. Note that all totals are rounded to the nearest integer.

Daily Classes

Standard

The Daily Classes report provides a class breakdown of daily traffic volume, with one week per page.
Each day is displayed with the total daily volume, and the volume and percentage for each vehicle class included in the report Profile.

The end of each page includes the five-day and seven-day averages. Note that days with incomplete data are not included in the average calculations.

Daily Classes example

Split Direction

The Daily Classes by Direction report includes additional rows where the daily class totals are split into vehicles travelling in the $\mathbf{A}>\mathbf{B}$ and $\mathbf{B}>\mathbf{A}$ directions. The $\mathbf{A B} \%$ and $\mathbf{B A} \%$ rows are the directional split percentages, not percentage of total.

Monday,		$\begin{array}{cc} \text { pril } & 21 \\ & \end{array}$	3	4	5	6	7	8	9	10	11	12	13	Total
Mon	143	43648	544	1654	304	48	99	94	73	210	12	1	8	46838
(\%)	0.3	93.2	1.2	3.5	0.6	0.1	0.2	0.2	0.2	0.4	0.0	0.0	0.0	
AB	80	22433	282	812	138	27	50	36	37	107	7	0	6	24015
AB\%	55.9	51.4	51.8	49.1	45.4	56.3	50.5	38.3	50.7	51.0	58.3	0.0	75.0	51.3
BR	63	21215	262	842	166	21	49	58	36	103	5	1	2	22823
BR\%	44.1	48.6	48.2	50.9	54.6	43.8	49.5	61.7	49.3	49.0	41.7	100.0	25.0	48.7

Daily Classes by Direction sample

Estimated Mass

The Estimated Mass version of the Daily classes report includes an additional line for each day that lists estimated standard axles, freight mass and gross mass totals. These values are calculated from the mass table defined in the report Profile.

Monday,	$\begin{array}{r} 29 \mathrm{At} \\ 1 \end{array}$	pril 2		3	4	5	6	7	8	9	10	11	12	Total
Mon	80	22433		282	812	138	27	50	36	37	107	7	0	24009
(\%)	0.3	93.4		1.2	3.4	0.6	0.1	0.2	0.1	0.2	0.4	0.0	0.0	
$\mathrm{ESA}=1382.6$, Freight $=5210000.0$, Gross mass $=14754800.0 \mathrm{~kg}$														

Daily Classes (Estimated Mass) sample

Time Filtering

The default behaviour of the Daily Classes report is to align to the first weekday. For a dataset that starts mid-week, a single week of data will span two pages.
To align the report to the start of the dataset, select the Align reports to start of time range option in the report's Profile. To restrict the report to a single week, consider using the First seven aligned days Auto-Wrap option.

Aligning the start of reports

Class Speed Matrix

The Class Speed Matrix report provides a speed-by-class matrix of traffic data over the entire period of data, in a one page format. This report provides an excellent summary of traffic behaviour.

Vehicles are grouped by class, and by speed as defined in the speed bins in the report Profile. Speed bin totals and percentages are given down the right of the report. Class totals and percentages are given along the bottom of the report.

Note that some vehicles may be in speed bins that are disabled in the report Profile. If this is the case, a message will be displayed at the bottom of the report, indicating the number of vehicles that are hidden. To view these vehicles, enable all speed bins.

Speed Separation Matrix

The Speed Separation Matrix report provides a speed-by-separation matrix of traffic data over the entire period of data, in a one page format.

Vehicles are grouped per the speed bins and separation bins defined in the report's Advanced Profile options. Speed bin totals and percentages are summarised down the right of the report, and separation bin totals and percentages along the bottom.

Speed Separation Matrix sample

Note that some vehicles may be hidden by speed bins that are disabled in the report Profile, or by separation that is beyond the last defined separation bin. If this is the case, a message will be displayed at the bottom of the report, indicating the number of vehicles that are hidden. To view these vehicles, enable all speed bins, or expand the last separation bin.

Remember that the definition of separation, as either headway or gap, can be modified in the report's Advanced Profile options.

Rolling Day Totals

The Rolling Day Totals report provides hourly vehicle volume and speed statistics, with 15 -minute totals.

This report uses a unique, 24-hour rolling format. Each 24-hour group aligns to the start of the time filter in the report Profile, not necessarily the start of a day.

The last four rows in each group are 12 (0700-1900), 16 ($0600-2200$), 18 ($0600-0000$) and 24 -hour totals for the preceding 24 hourly steps.

* Saturday, 27 April 2002 - Sunday, 28 April 2002								
Time	Drop	Drop	Drop	Drop	Total	I	Mean	Vpp
	--00	--15	--30	--45				85
-	46	58	104	77	285	I	85.0	90.7
6:00 HM	76	115	152	153	496	1	83.2	88.9
7:00 AM	119	168	162	196	645	1	83.2	88.9
8:00 AM	176	171	219	229	795	I	80.4	86.0
9:00 AM	209	240	258	266	973	1	79.6	85.3
10:00 AM	260	266	284	297	1107	1	78.4	84.2
11:00 AM	309	299	309	312	1229	1	76.6	83.2
12:00 PM	317	324	341	315	1297	1	76.7	83.2
1:00 PM	306	316	324	315	1261	1	76.9	83.5
2:00 PM	285	287	303	303	1178	1	77.8	83.9
3:00 PM	275	284	272	303	1134	1	78.4	85.0
4:00 PM	297	293	371	398	1359	1	77.1	83.5
5:00 PM	427	357	332	299	1415	1	78.0	84.2
6:00 PM	276	266	270	251	1063	1	80.1	86.0
7:00 PM	244	223	216	182	865	I	80.8	86.8
8:00 PM	178	170	150	151	649	1	81.7	87.5
9:00 PM	134	136	171	139	580	I	82.1	87.5
10:00 PM	157	168	160	166	651	1	81.3	86.4
11:00 PM	164	160	127	114	565	1	82.2	88.2
12:00 AM	142	115	110	88	455	I	82.0	87.1
1:00 AM	75	69	58	51	253	1	85.3	92.5
2:00 AM	37	42	29	34	142	1	86.0	94.7
3:00 AM	33	27	33	33	126	1	87.4	95.8
4:00 AM	23	31	37	34	125	I	86.1	94.3
07-19	3256	3271	3445	3484	13456	I	78.3	84.6
06-22	3888	3915	4134	4109	16046	I	78.8	85.3
06-00	4209	4243	4421	4389	17262	I	79.0	85.3
00-00	4565	4585	4792	4706	18648	I	79.4	86.0

Rolling Day Totals sample

The Rolling Day Totals report is actually a shortcut to a Custom List Report. Selecting the Properties of this report will display the standard Custom List options.

Individual Vehicles

The Individual Vehicles report displays speed, wheelbase, headway, class and a scaled wheel picture for every vehicle. Each line of the report represents a single vehicle, with the time and date the vehicle was logged by the Roadside Unit.

DS	Axle Mum	Ht	YYYY-MM-DD	hh:mm: ss	Dr	Speed	Wb	Havry	Gap	Ax	Gp	Rho	C1	Km	Vehicl			
01	00002b45	04	2002-04-27	07:07:17	AB	75.8	2.8	1.0	0.9	2	2	1.00	2	00000020	SV	0	0	
01	00002b49	04	2002-04-27	07:07:18	$A B$	76.8	3.0	1.3	1.1	2	2	1.00	2	00000020	SV	0	0	
01	00002b4d	10	2002-04-27	07:07:19	AB	73.4	9.3	1.3	1.2	5	3	1.00	9	00000010	ART5	0	00	00
01	00002b57	12	2002-04-27	07:07:35	AB	79.6	14.1	15.3	14.9	6	3	1.00	10	00000010	ART6	0	00	000
01	00002b63	04	2002-04-27	07:08:05	AB	92.5	2.8	29.9	29.3	2	2	1.00	2	00000010	SV	0	0	
01	00002b67	04	2002-04-27	07:08:10	$A B$	75.7	4.9	5.2	5.1	2	2	1.00	4	00000020	TB2	0	0	
01	00002b6b	04	2002-04-27	07:08:13	$A B$	79.7	2.4	3.4	3.2	2	2	1.00	2	00000020	SV	0	0	
01	00002b6f	04	2002-04-27	07:08:17	AB	78.8	2.2	3.7	3.6	2	2	1.00	2	00000010	SV	0	0	
01	00002b73	06	2002-04-27	07:08:27	$A B$	72.2	6.5	10.2	10.1	3	3	1.00	3	00000020	SVT	0	0	
	-••		\cdots	\cdots							\cdots			\cdots	\cdots			

Individual Vehicle report sample

Column	Description
DS	Tagged dataset index.
Axle Num	Dataset axle index.
Ht	Number of axle hits in the vehicle.
Date and Time	Date and time of the first axle in the vehicle.
Dr	Direction of travel of the vehicle.
Speed	Speed of the vehicle. Units of measurement are determined by the report Profile.
Wb	Wheelbase of the vehicle. Units of measurement are determined by the report Profile.
Hdwy	Headway - time since the first axle of the last vehicle travelling
in the same direction.	

A graphical representation of the axle events for each individual vehicle may be obtained using the Axle Inspector. This is a timeline of sensor hits that MCReport has partitioned into a vehicle, based on the selected classification scheme. To display, simply double-click any row in the report.

Examining individual vehicles using the Axle Inspector

The two sensor hit streams in a dataset are represented by the black lines, marked A and B. A circle indicates axle hits on each sensor and are labelled with the time in milliseconds since the first hit. A line is drawn from each hit at an angle determined by the speed of the vehicle. Since the speed of each vehicle is determined by the first A and B hits, then the first A and B hit lines will always overlap.

Subsequent hit lines are drawn at the same angle, and under perfect operating conditions the corresponding A and B pairs will overlap. Any gap between these pairs of hits indicates a lateral movement in the sensors, or a change in vehicle velocity.

The black triangles on the \mathbf{X} line represent "axles" used by MCReport, after processing and filtering, to classify the vehicle

The time and distance between sensor hits can be measured using the inspector's time markers. Moving the mouse over the timeline moves the Offset marker. Clicking will move the Anchor marker to the current location. The Delta field at the top is the difference between the anchor and offset markers.

Queued Vehicles

The Queued Vehicles report is a variation of the Individual Vehicles report. Vehicles are grouped based on the Separation vehicle filter setting in the report Profile. For example, with a Separation filter set to less than four seconds, all vehicles travelling less than four seconds apart will be listed, followed by a blank line. This is useful for examining queues of vehicles.

DS	Axle Num	Ht	YYYY-MM-DD	hh: 11 m : ss	Dr	Speed	Wb	Hdvy	Gay	Ax	Gp	Rho	C1	$\mathbf{K m}$	Vehic			
00	000004ce	04	2005-03-29	10:59:19	AB	69.2	2.4	10.5	10.4	2	2	1.00	2	00000020	SV	0	0	
00	000004d2	04	2005-03-29	10:59:22	AB	63.8	4.2	3.1	3.0	2	2	1.00	4	00000020	TB2	0	0	
00	000004d6	04	2005-03-29	10:59:24	AB	61.8	2.6	1.6	1.4	2	2	1.00	2	00000010	SV	0	0	
00	000004ec	12	2005-03-29	10:59:52	AB	56.1	14.8	9.0	7.9	6	3	1.00	10	00020042	ART6	0	00	000
00	000004 f 8	04	2005-03-29	10:59:53	AB	55.2	2.2	1.6	0.6	2	2	1.00	2	00000020	SV	0	0	
00	000004fc	04	2005-03-29	10:59:55	AB	61.7	3.0	1.6	1.4	2	2	1.00	2	00000020	SV	0	0	
00	00000500	04	2005-03-29	10:59:56	AB	60.0	2.8	1.4	1.2	2	2	1.00	2	00000020	SV	0	0	
00	00000504	04	2005-03-29	10:59:59	$A B$	59.2	4.9	2.4	2.3	2	2	1.00	4	00000020	TB2	0	0	
00	00000508	04	2005-03-29	11:00:00	${ }^{\text {AB }}$	61.0	2.8	1.5	1.2	2	2	1.00	2	00000020	SV	0	0	
00	0000050c	04	2005-03-29	11:00:04	$A B$	63.5	4.8	3.5	3.3	2	2	1.00	4	00000010	TB2	\bigcirc	0	
00	0000051a	06	2005-03-29	11:00:53	AB	65.3	11.9	23.5	23.4	3	3	1.00	7	00000020	ART3	0	0	0
00	00000520	04	2005-03-29	11:00:56	AB	62.5	2.5	2.9	2.3	2	2	1.00	2	00000010	SV	0	0	
	- .		-••	.	-			\cdots	\cdots			. \cdot		\cdots	-		-••	

Queued Vehicles Sample

Speed Statistics

Overview

The Speed Statistics report provides a table of speed bin distribution with multipliers, in a single page format for the entire tagged data.

The first block is MCReport's standard speed statistics block, which shows all speed limits and percentiles per the Speed page of the report's Advanced Profile options.

```
Vehicles = 1127611
Posted speed limit = 80 km/h, Exceeding = 438231(38.86%), Mean Exceeding = 85.82 km/h
Limit 1 (PSL + 5) (80 * 100%) + 5 = 85 km/h, Exceeding = 191266 (16.96%)
Limit 2 (PSL + 10%) (80*110%) + 0=88 km/h, Exceeding = 107025 (9.49%)
Maximum= 159.6 kmhh, Minimum= 10.2 km/h, Mean = 77.3 km/h
85% Speed = 85.3 km/h, 95% Speed = 91.1 km/h, Median = 77.8 km/h
20 km/h Pace = 68-88, Number in Pace = 868975 (77.06%)
Variance =90.07, Standard Deviation = 9.49 km/h
```


Speed Statistics Block Sample

The Speed Bins table provides bin totals, plus cumulative totals above and below the upper limit of each bin (highlighted in bold).

Speed Bins																	
Speed			1	Bin		1	Below		1	Above		1	Energy		rMult	1 n * rMult	
0	-	10	I	0	0.0%	I	0	0.0%	I	1127611	100.0%	I	0.00		0.00	1	0.00
10	-	20	1	74	0.0%	1	74	0.0%	,	1127537	100.0\%	1	0.89		0.00	1	0.00
20	-	30	1	858	0.18	I	932	0.18	,	1126679	99.9*	1	3.62		0.00	1	0.00
30	-	40	1	1729	0.2%	I	2661	0.2%	1	1124950	99.8\%	1	25.14		0.00	1	0.00
40	-	50	1	7690	0.78	1	10351	0.98	1	1117260	99.1 \%	1	394.09		0.00	1	0.00
50	-	60	1	36929	3.3\%	I	47280	4.2\%	1	1080331	95.8\%	1	2446.95		0.00	1	0.00
60	-	70	I	159851	14.2\%	1	207131	18.48	1	920480	81.6\%	1	15012.14		0.00	1	0.00
70	-	80	1	482249	42.8\%	1	689380	61.1 \%	1	438231	38.9*	1	54137.10		0.00	1	0.00
80	-	90	1	365441	32.4\%	I	1054821	$93.5 \frac{8}{8}$	1	72790	6.5\%	1	36517.89		1.00	I	365441.00
90	-	100	1	61422	5.4%	1	1116243	99.0%	1	11368	1. 0%	1	3657.55		2.00	I	122844.00
100	-	110	1	8832	0.8%	1	1125075	$99.8 \frac{1}{4}$	1	2536	0.2*	1	387.99		4.00	I	35328.00
110	-	120	1	1742	0.2%	1	1126817	99.9\%	1	794	0.1%	1	94.03		8.00	I	13936.00
120	-	130	1	509	0.0%	1	1127326	100.0\%	1	285	0.0 \%	1	19.10		16.00	I	8144.00
130	-		1	186	0.0%	1	1127512	100.0\%	1	99	0.0%	1	20.24		32.00	1	5952.00
140	-		1	74	0.0%	1	1127586	100.0\%	1	25	0.0%	1	0.00		64.00	1	4736.00
150	-		1	25	0.0%	1	1127611	100.0\%	1	0	0.0%	1	0.00		128.00	I	3200.00
160	-		1	0	0.0%	1	1127611	100.0\%	1	0	0.0%	1	0.00		0.00	I	0.00
170	-	180	1	0	0.0%	1	1127611	100.0\%	1	0	0.0%	1	0.00		0.00	1	0.00
180	-	190	1	0	0.0%	I	1127611	100.08	1	0	0.0 \%	1	0.00		0.00	I	0.00
190	-	200	1	0	0.0%	1	1127611	100.0%	1	0	0.0%	1	0.00	1	0.00	I	0.00

Total Speed Rating $=559581.00$
Total Moving Energy $($ Estimated $)=112716.73$

Speed Statistics Speed Bins Sample

The Energy calculations use the standard formula: $\mathbf{e}=1 / 2 \mathbf{m v}^{2}$ where \mathbf{m} is the estimated vehicle gross mass from the Advanced Profile mass table. The value is always reported in MegaJoules.
The $\mathbf{v M u l t}$ column is each speed bin's multiplier, with \mathbf{n} * $\mathbf{v M}$ Mult the product of each speed bin's total volume and multiplier. The total gives the Speed Rating for the entire data.

The final block in this report summarises the cumulative totals for each of the speed limits specified in the Advanced Profile options.

The hourly variant of the Speed Statistics report provides all speed statistics grouped by hour of day, in a single page format for the entire tagged data. Additional columns are appended for total vehicles exceeding each of the speed limits defined in the Advanced Profile options.

Hour Bins (Partial days)																									
Time	1	Bin		1	Min	$\begin{aligned} & 1 \\ & \mathbf{I} \\ & \mathbf{I} \end{aligned}$	Max	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Mean	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \hline \end{aligned}$	Median	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	85\%	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \text { I } \end{aligned}$	95%	$\begin{aligned} & 1 \\ & \text { I } \\ & \text { I } \end{aligned}$	$>$ PSL		I	Limit 1 $85 \mathrm{~km} / \mathrm{h}$		$\begin{aligned} & 1 \\ & 1 \\ & \text { I } \end{aligned}$	Limit 2 $88 \mathrm{~km} / \mathrm{h}$		111
	1			1													80 km	km / h							
	1			1																PSL	$+5$		PSL +	10\%	
0000	,	11601	1 1.0\%	1	1.3	I	158.3	I	81.7	I	81.0	I	89.6	I	97.6	1	6670	57.5\%	1	3542	30.5\%	1	2266	19.5 \%	1
0100	-	7286	6 0.6\%	1	50.5	1	169.5	1	84.0	1	82.4	1	91.4	1	101.2	1	4739	65.0%	1	2679	36.8\%	1	1814	24.98	1
0200	1	4827	7 0.4*	1	14.2	I	169.2	1	83.7	I	82.8	1	92.5	1	101.5	1	3168	65.6\%	1	1897	39.3 \%	1	1299	26.9%	1
0300	1	4731	10.4%	1	0.0	1	159.6	1	84.6	I	83.2	1	93.6	1	102.2	1	3223	68.1 \%	1	1971	41.7\%	1	1383	29.2\%	1
0400	1	6614	40.68	1	5.5	I	159.5	1	85.0	1	83.5	1	93.2	1	100.8	1	4676	70.7%	1	2884	43.6 \%	1	1992	30.1 \%	1
0500	1	17587	7 1.6\%	1	2.9	I	143.7	1	84.9	1	83.9	1	92.5	1	99.0	1	12818	72.9%	1	7755	44.1\%	1	5205	29.6\%	1
0600	1	46035	5 4.1*	1	2.8	1	144.2	1	81.9	1	81.4	1	88.6	1	94.3	1	27224	59.1 *	1	13804	30.0%	1	8116	17.6\%	1
0700	I	78749	7.0\%	1	0.0	I	133.9	1	75.7	1	76.3	1	83.9	1	88.6	1	25545	32.4\%	1	9743	12.4 \%	1	4826	6.18	1
0800	I	86287	7 7.6\%	1	3.1	I	153.9	1	72.7	1	74.2	1	82.4	1	87.5	1	20943	24.3\%	1	7793	9.0 \%	1	3948	4.6\%	1
0900	1	66800	5.9\%	1	2.4	1	145.6	1	77.1	1	77.4	1	84.6	1	90.0	1	24130	36.1\%	1	9903	14.8%	1	5265	7.9\%	1
1000	I	64155	5 5.7\%	1	3.7	I	142.7	1	77.2	1	77.4	1	85.0	1	90.0	1	23286	36.3\%	1	9599	$15.0 \frac{8}{8}$	1	5174	8.1 \%	1
1100	I	66378	5.9\%	1	2.3	I	138.2	1	77.0	1	77.0	1	84.6	1	89.6	1	23561	35.5\%	1	9399	14.2\%	1	4918	7.48	1
1200	1	70013	3 6.2\%	1	2.4	1	150.5	1	76.6	1	76.7	1	84.2	1	89.6	1	23682	33.8\%	1	9594	13.7\%	1	5086	7.38	1
1300	1	67360	06.0\%	1	0.0	I	149.3	1	77.0	1	77.0	I	84.6	1	90.0	1	23972	35.6\%	I	9660	14.3 \%	1	5147	7.6\%	1
1400	1	69167	7 6.1*	1	0.0	1	144.9	1	77.2	1	77.4	1	84.6	1	90.0	1	24924	36.0%	1	10049	14.5\%	1	5421	7.8\%	1
1500	1	79571	$17.1 \frac{1}{6}$	1	0.0	I	153.0	1	75.9	1	76.3	1	84.2	1	89.3	1	25570	32.1 \%	1	10298	12.98	1	5473	6.98	1
1600	1	92027	78.2%	1	0.0	I	172.5	1	75.0	1	75.6	1	83.5	1	88.6	1	27790	30.2\%	1	10669	11.6%	1	5358	5.8%	1
1700	1	92431	18.2%	1	0.0	1	140.7	1	73.8	1	75.6	1	83.5	1	88.2	1	27793	30.1\%	1	10540	11.4 \%	1	5261	5.78	1
1800	1	62081	15.5%	1	0.0	1	161.4	1	79.1	1	79.2	1	86.4	1	91.4	1	28462	45.8\%	1	12196	19.6 \%	1	6605	10.6%	1
1900	1	38631	13.4%	1	3.7	1	150.0	1	81.1	1	80.6	1	87.8	1	94.0	1	20947	54.2 \%	1	9973	25.8\%	1	5788	15.0%	1
2000	1	28888	8 2.6\%	1	2.7	1	174.8	1	82.1	1	81.4	1	88.9	1	95.8	1	16908	58.5\%	1	8355	28.9\%	1	5085	17.6\%	1
2100	1	26615	5 2.4\%	1	3.6	1	153.9	1	81.8	1	81.0	1	88.6	1	94.7	1	15311	57. 5\%	1	7447	28.0%	1	4421	16.6%	1
2200	1	22823	3 2.0*	1	4.1	1	171.4	1	81.7	1	81.0	1	88.6	1	95.0	1	12841	56.3 \%	1	6215	27.2 \%	1	3808	16.7\%	1
2300	I	17470	1.5*	1	0.0	1	185.0	1	80.8	1	81.0	1	89.6	1	96.8	1	10061	57.6\%	1	5314	30.4\%	I	3379	19.3 \%	1
	1	1128127	7100.0%	1	0.0	I	185.0	I	77.3	I	77.8	I	85.3	1	91.1	1	438244	38.8\%	1	191279	17.0\%	1	107038	9.5\%	I

Overview

The Separation Statistics report provides a table of separation bin distribution with multipliers, in a single page format for the entire tagged data. Remember that separation can be defined as headway or gap in the Advanced Profile options.

Separation			1	Bin		1	Below		1	Above		1	sMult	1	n * sMult
0.00	-	0.50	1	129752	11.8\%	I	129752	11.8\%	I	968884	88.2\%	1	8.00	1	1038016.00
0.50	-	1.00	1	403490	36.7\%	1	533242	48.5\%	1	565394	51.5\%	1	4.00	1	1613960.00
1.00	-	2.00	1	263272	24.0\%	1	796514	72.5\%	1	302122	27.5\%	1	2.00	1	526544.00
2.00	-	4.00	1	157403	14.3年	1	953917	86.8\%	1	144719	13.2\%	I	1.00	I	157403.00
4.00	-	8.00	1	85657	7.8 \%	1	1039574	94.6\%	1	59062	5.4%		0.00	1	0.00
8.00	-	16.00	1	37270	3.4\%	I	1076844	98.0%	1	21792	$2.0 \frac{8}{}$,	0.00	1	0.00
16.00	-	32.00	1	13771	1.3 3	1	1090615	99.3 \%	1	8021	0.78		0.00	1	0.00
32.00	-	64.00	1	4290	0.48	1	1094905	99.78	1	3731	0.3%		0.00	1	0.00
64.00	-	128.00	1	1944	0.2%	1	1096849	99.8\%	1	1787	0.2 \%	1	0.00	1	0.00
128.00	-	1000.00	I	0	0.0%	1	1096849	99.8\%	1	1787	0.2 \%	1	0.00	1	0.00

Total Separation Rating $=3335923.00$

Separation Statistics Sample

The Separation Bins table provides bin totals, plus cumulative totals above and below the upper limit of each bin (highlighted in bold). The sMult column is each separation bin's multiplier, with \mathbf{n} * $\boldsymbol{s} M u l t$ the product of each separation bin's total volume and multiplier. The total gives the Separation Rating for the entire data.

By Hour

The hourly variant of the Separation Statistics report provides separation bin distribution grouped by hour of day.

Hour Bins

Time	I	Bin	I	Mean	1	Sep									
	I		I		1	0.0	0.5	1.0	2.0	4.0	8.0	16.0	32.0	64.0	128.0
	1		1		1	0.5	1.0	2.0	4.0	8.0	16.0	32.0	64.0	128.0	1000.0
0000	1	11206	I	21.0	1	3	222	1195	1735	2068	2239	1971	1130	444	197
0100	1	7018	1	31.5	1	0	86	528	822	1006	1371	1403	1023	477	298
0200	1	4657	I	48.2	1	1	26	223	356	493	804	986	916	503	343
0300	1	4506	,	58.6	1	0	11	178	279	467	735	962	967	523	377
0400	1	6199	I	42.3	1	1	47	292	544	776	1157	1385	1108	546	340
0500	-	16262	,	16.1	1	10	583	2199	2899	3339	3308	2340	1089	349	145
0600	1	42520	1	18.6	1	73	4809	13098	9981	7231	4586	1916	599	175	37
0700	1	72229	I	12.5	1	96	11304	32292	15957	7509	3340	1210	386	94	22
0800	1	79364	I	12.0	1	103	11660	36690	18255	7965	3266	1039	306	38	15
0900	1	62367	1	7.2	1	83	6899	23016	16276	9854	4563	1394	253	12	0
1000	1	60618	1	6.6	1	79	6187	21426	16345	10014	4894	1453	192	8	3
1100	1	65306	1	6.2	1	93	7320	24217	17254	10287	4713	1239	151	3	5
1200	1	70013	1	6.6	1	101	8486	27238	18227	10252	4460	1121	111	0	1
1300	1	67360	1	6.9	1	92	7971	25510	17664	10192	4537	1234	131	6	3
1400	1	69167	1	10.5	1	104	8736	26558	17828	10181	4428	1156	154	3	0
1500	1	79571	1	8.6	1	133	11833	33338	19593	9780	3819	942	101	2	0
1600	1	92027	1	7.5	1	156	15583	42098	21305	8976	3162	631	81	4	5
1700	1	92431	1	5.0	1	150	14607	42984	22235	8659	3010	643	88	9	16
1800	1	62081	1	6.9	1	86	7084	23016	15923	9606	4582	1515	242	8	1
1900	1	38631	1	8.0	1	36	2690	10227	9489	7835	5300	2333	649	55	2
2000	1	28888	1	9.9	1	24	1307	5859	6592	6431	4978	2636	917	133	4
2100	1	26615	1	11.6	1	16	1135	5092	5872	5949	4690	2657	1007	182	7
2200	1	22799	1	11.9	1	5	759	3911	4803	5048	4321	2592	1032	298	28
2300	1	16801	1	16.4	1	6	407	2305	3038	3485	3394	2512	1138	418	95
	1	098636	I		I	1451	129752	403490	263272	157403	85657	37270	13771	4290	1944

The Data Scan report validates a single data file, based on a set of adjustable rules and boundaries. This report is primarily intended as an automated data check for Scripting.

Data Scan validation parameters

Spectrum of Axle Hits

The Spectrum of Axle Hits report, or Hit Spectrum, is a histogram of the time difference between successive sensor hits. This chart is one of the most useful tools for instantly verifying data quality.

MCReport scans a dataset, and keeps a tally of the time between successive sensor hits, grouping them by the order of hits: \mathbf{A} to \mathbf{A}, \mathbf{B} to \mathbf{B}, \mathbf{A} to \mathbf{B} or \mathbf{B} to \mathbf{A}. The Hit Spectrum shows the \mathbf{A} to \mathbf{A} and \mathbf{B} to B plots by default - the time between hits on the same sensor provides the most useful information.

The time between sensor hits can vary over a huge range, so the horizontal axis is logarithmic. This allows a range from one millisecond to ten million seconds.

A typical Hit Spectrum is characterised by the following:

1. With good quality classification data, the A to A and B to B plots should perfectly overlay each other. Only the top-most plot may be visible.
2. Peaks in the left-most region, from around 10 to 30 milliseconds, depict spurious hits caused by sensor noise.
3. A sharp peak somewhere around 100 ms represents the product of speed and wheelbase of the most frequently recorded vehicles (usually cars).
4. Additional smaller peaks in this region are due to bi-axle and tri-axle groups, or trailers.
5. A trough approaching the x -axis indicates low congestion.
6. The remainder of the Hit Spectrum, usually above 400 ms , is characterised by a broad hump that represents the distribution of inter-vehicle times.

Typical Hit Spectrum

Correlation of Axle Hits

The Correlation of Axle Hits report is a time-based plot of uncorrelated axle hits per integration period. A correlated axle is one where there is a matching A and B sensor hit for any given axle, within a small margin of error. Perfect data quality would have no uncorrelated axles, however a small number is common due to sensor noise, simultaneous vehicle crossings on bidirectional sites, and vehicles changing lanes.

Correlation of Axle Hits Sample

Audit of Data Quality

The Audit of Data Quality report is a time-based plot comparing the number of axles recorded on both the A and B sensors, and displays a graph of the difference between them. Note that this is a comparison of hit counts after MCReport has processed the raw data, so is a measure of the quality of data used to classify vehicles. This may differ from the Hits plot in the File Tree, which is raw data.

This report immediately highlights single sensor failures where the trace deviates significantly from the zero horizontal axis. The Header Sheet also contains additional axle and vehicle statistics.

Audit of Data Quality sample - one sensor fails mid-survey

Axle Position Histogram

The Axle Position Histogram is a histogram of inter-axle spacings within vehicles. This report will usually have a characteristic shape corresponding to common axle spacings, making it an extremely useful tool for verifying data quality.

The Axle Position Histogram can be characterised by:

1. A group of spikes representing the most common passenger vehicles, and light trucks.
2. Spikes corresponding to the double and triple axle groups of heavy vehicles (for datasets containing a noticeable percentage of these vehicles).
3. Smaller spikes corresponding to the longer inter-axle spans in heavy vehicles, such as buses.

The Axle Position Histogram can be used to check for:

- matching sensor length, and
- correct sensor spacing.

Characteristic spikes in the histogram can be checked against known good data from the same area. If these spikes deviate in position by a significant amount, one of these problems may exist, and speed and classification should be considered suspect for this dataset.

For example, it is possible to target the double axle group on the back of an articulated truck, which is usually one of a few standard distances apart. Selecting Properties from the report's right-click menu will display the axle spacings filter.

Selecting SP4 in this case will display only the spacings between axles four and five. Note also the X -axis scale can be modified to increase resolution.

Filtering should create a few clearly defined spikes that can be verified using the cross-hairs. Again, deviation from known values may indicate a sensor installation problem.

Filtered Axle Position Histogram
For bidirectional data with a suspected problem, it is possible to distinguish between different sensor length and incorrect spacing. Different sensor length will result in spacings that are too short in one direction, and too long in the other. If filtering for one direction using the report Profile's direction filter moves the Axle Position Histogram left or right, this indicates different sensor length. If the report is unmoved, then incorrect spacing is the likely cause.

The Vehicle Flow report is a time-based plot of total vehicle volume.
Note that the Vehicle Flow report is a measure of vehicles per time period. The time period, or integration time is displayed next to the vertical axis. For example, with an integration time of one hour, each point on the graph represents total vehicles per hour.

The Vehicle Flow report has a variable display span and integration time using the report's Graph Toolbar.

Velocity Dispersion

The Velocity Dispersion report is a time-based plot showing relative speed densities. This report highlights the relationship between speed and traffic density at a site. Periods of congestion are especially obvious.

Speed

The Speed report is a time-based plot of average vehicle speed per selected integration period. By default, the report also shows a plot of maximum vehicle speed, and a horizontal marker for the posted speed limit (PSL).

Speed Report sample, with mean, 85th percentile and maximum speed.
Right-clicking on the report and selecting Properties displays the report's options.

Speed report options

Show Min trace displays a plot of minimum speed per integration period. Show Percentile displays a plot for the first percentile, and Show Extra Speed Limits displays horizontal markers for each of the speed limits, per the settings in the Speed page of the report's Advanced Profile options.

The Annotation at marker is a piece of text that appears next to the time of the marker, which can be placed with the cross-hairs. The drop-down list is also user-editable.

The Speed report also has two special Display Span options for a Virtual Day or Virtual Week.

Stacked Flow

The Stacked Flow reports are similar to the Flow report, but with either vehicle class or speed bin differentiation.

Total flow per integration period is represented by a stack of bars for each included class or speed bin. Fewer classes or speed bins may be required to give sufficient detail. Aggregating a class scheme (usually light, medium and heavy vehicles) often gives extremely useful results.

Flow Stacked by Class sample, using an aggregated class scheme
Another example is two speed bins, one either side of the PSL, highlighting total vehicles exceeding the PSL.

Flow Stacked by Speed sample showing vehicles above and below the PSL

Clustered Flow

The Clustered Flow reports are a variation of the Stacked Flow reports. Rather than stacking the classes or speed bins, each is plotted side-by-side.

These reports require a large integration time or a small display span to give sufficient resolution.

Flow Clustered by Class sample, with aggregated class scheme

Flow Clustered by Speed Bins sample, showing vehicles exceeding the PSL

Separation

The Separation report is a time-based plot of average vehicle separation per integration period.
Remember that separation can be optionally defined as headway or gap in the report's Advanced Profile options.

Dispersion Plots

MCReport has four dispersion or scatter plots:

- Speed vs Separation
- Volume vs Speed
- Density vs Volume
- Volume vs Density

Every vehicle is represented by a single point on the graph. Point density is indicated by the density colour glide specified in the report Profile.
These plots portray differing characteristics of traffic flow, which are normally based on theoretical values in traffic engineering text books. They can be very useful when analysing data on roads that are at or near capacity, or for before and after studies of road works such as traffic calming.
The Granularity option in the Format page of the Advanced Profile options adjusts the resolution of these reports. A higher granularity gives finer resolution, but require more vehicles to build any significant density.

Speed vs Separation Dispersion Plot sample
The horizontal axis of the Speed vs Separation can be modified to give more resolution. Simply right-click, and select Properties.

Speed vs Volume Dispersion Plot sample

MCReport has two bin charts - the Class bin report, and the Speed bin report. These reports provide a graphical representation of the proportions of class and speed bins respectively. The Header Sheet also contains a table of class/speed bin totals and percentages.

Bin charts have four renderings, each providing a unique data representation. The most common renderings are bar or column charts, and pie charts.

The pie chart rendering is a three-dimensional, dynamic chart. The chart can be rotated to the angle that best represents the data by clicking and dragging the black circle in the centre. Individual pie slices can be highlighted by clicking the coloured circle next to the class or speed bin label.

Class Bin report sample, with pie rendering

Speed Bin report sample, with bar rendering

Speed Histogram

The Speed Histogram report provides the speed profile at a site. A normal curve, with the same mean and standard deviation, is plotted to help gauge the skew of the speed distribution.

Optional vertical markers also show the speed percentile, speed pace and posted speed limit - all as specified in the report's Profile.

Right-clicking on the report and selecting Properties displays the report's options, most of which are self-explanatory.

The Set X-max to profile speed max option changes the maximum value of the speed axis to be the upper limit of the Profile's speed filter.
The Show as ogive option displays a cumulative total of vehicles.

Wheelbase Histogram

The Wheelbase Histogram report presents a graphical distribution of vehicle wheelbases, highlighting common vehicle lengths.

The Axle Position Histogram report also shows intra-vehicle axle spacings.

The X-axis scale can be changed, by right-clicking the report and selecting Properties.

Separation Histogram

The Separation Histogram report provides a graphical distribution of the separation (in time) between vehicles.

The X-axis scale can be changed, by right-clicking the report and selecting Properties. This allows for examination of the behaviour of close-following vehicles.

The Speed vs Separation dispersion plot also examines this behaviour, but takes into account vehicle speed.

The definition of separation as either headway or gap can be set in the report's Advanced Profile options.

Special Reports

Most of the reports in the Special group of reports are highly application-specific, emulating other "standard" report formats.

www.metrocount.com

Copyright® 1991, 2009 Microcom Pty Ltd. All rights reserved. MetroCount, Traffic Executive, MCSetup, MCSetLite, MCReport, MCTools, Microcom and Microcom Pty Ltd, and the MetroCount and Microcom Pty Ltd logo, are trademarks of Microcom Pty Ltd. All other trademarks are the property of their respective owners. Other Microcom intellectual property including Patents and designs may be protected by international law. The furnishing of this software, the accompanying product or any related documentation or materials does not give you any license to this intellectual property.

